What about the lances out the lances of the

How LUC is considered in FWFPs?

Jimena Rodriguez, Katie Beecroft

Environmental I m p a c t

LUC

Systematic arrangement of different kinds of land according to those properties that determine its capacity for longterm sustained production

LUC

Systematic arrangement of different kinds of land according to those properties that determine its capacity for long-term sustained production

FWFPs

A farm planning process that puts the health of the whenua (land) and wai (water) at the centre of farm decision making. (Ministry for the Environment)

LUC

Systematic arrangement of different kinds of land according to those properties that determine its capacity for long-term sustained production

FWFPs

A farm planning process that puts the health of the whenua (land) and wai (water) at the centre of farm decision making. (Ministry for the Environment)

Productive capacity

Protect water quality

Land units are an area of contiguous or non-contiguous land with similar biophysical features.

To meet certification requirements you must identify, map and describe land units.

Land units are an area of contiguous or non-contiguous land with similar biophysical features.

To meet certification requirements you must identify, map and describe land units.

When defining land units, you should consider the following features:

- soil types (eg, heavy soils versus free-draining soils)
- landform (eg, slope, aspect, underlying geology)
- climate
- presence of irrigation
- presence of land drainage (surface and sub-surface).

Land units are an area of contiguous or non-contiguous land with similar biophysical features.

To meet certification requirements you must identify, map and describe land units.

When defining land units you should consider the following features:

- soil types eg, heavy soils versus free-draining soils)
- landform (eg, slope, aspect, underlying geology)
- climate
- presence of irrigation
- presence of land drainage (surface and sub-surface).

Land units are an area of contiguous or non-contiguous land with similar biophysical features.

To meet certification requirements you must identify, map and describe land units.

When defining land units, you should consider the following features:

- soil types (eg, heavy soils versus free-draining soils)
- landform (eg, slope, aspect, underlying geology)
- climate
- presence of irrigation
- presence of land drainage (surface and sub-surface).

Land units are an area of contiguous or non-contiguous land with similar biophysical features.

To meet certification requirements you must identify, map and describe land units.

When defining land units, you should consider the following features:

- soil types (eg, heavy soils versus free-draining soils)
- landform (eg, slope, aspec underlying geology)
- climate
- presence of irrigation
- presence of land drainage (surface and sub-surface).

Land units are an area of contiguous or non-contiguous land with similar biophysical features.

To meet certification requirements you must identify, map and describe land units.

When defining land units, you should consider the following features:

- soil types (eg, heavy soils versus free-draining soils)
- landform (eg, slope, aspect, underlying geology)
- climate
- presence of irrigation
- presence of land drainage (surface and sub-surface).

Land units are an area of contiguous or non-contiguous land with similar biophysical features.

To meet certification requirements you must identify, map and describe land units.

When defining land units, you should consider the following features:

- soil types (eg, heavy soils versus free-draining soils)
- landform (eg, slope, aspect, underlying geology)
- climate
 - presence of irrigation X
- presence of land drainage (surface and sub-surface). 💥

Land Use Capability – *Limitations*

Land Use Capability – *Limitations*

Land Use Capability – *Limitations*

Age

Map scale for FWFPs

Land Use Capability – *Limitations*

Age

Map scale for FWFPs

Do not represent current state of environment

- **Opportunities**
- Updating mapping scale
- **Digitisation** of the **resources** available in each
- RC

Opportunities

Impact of climate change on LUC

Opportunities

Incorporation of **new technologies** to **manage limitations** identified by **LUC**

Opportunities

Incorporating new mapping system

▲ LUC map

Opportunities – Incorporating new **mapping system**

Develop a programme to update the LUC maps

Fit for purpose for resource management plans, freshwater farm plans and regulation

(?)

(?)

How can we do it?

How can we do it?

Do we have the resources (experts, time and money)?

How can we do it?

Do we have the resources (experts, time and money)?

Work along with RC

 $\left(\mathcal{C}\right)$

L W E Environmental I m p a c t

office@lei.co.nz | www.lei.co.nz | 06 359 3099